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1 CLASSICAL AND MODERN SPECTRUM ESTIMATION

1 Classical and Modern Spectrum Estimation
1.1 Properties of Power Spectral Density
Assuming the covariance sequence r(k) decays rapidly (1), we will demonstrate that the two definitions of PSD (2) are
equivalent, both analytically and in simulation.

lim
N→∞

1
N

N−1∑
k=−(N−1)

|k||r(k)| (1)

P (ω) =
∞∑

k=−∞
r(k)e−j = lim

N→∞
E

{
1
N

∣∣∣∣∣N−1∑
n=0

x(n)e−jnω
∣∣∣∣∣2} (2)

The second definition of PSD 2 can be expanded and rearranged in the following way:

P (ω) = lim
N→∞

E

{
1
N

N−1∑
n=0

x(n)e−jnω
N−1∑
n=0

x∗(m)ejnω
}

(3)

= lim
N→∞

1
N

N−1∑
n=0

N−1∑
n=0

E

{
x(n)x∗(m)e−j(n−m)ω

}
(4)

Substituting n−m with k, we obtain:

P (ω) = lim
N→∞

1
N

N−1∑
n=0

n−N+1∑
k=n

r(k)e−jkω
}

(5)

= lim
N→∞

1
N

N−1∑
k=−N+1

(N − |k|)r(k)e−jkω (6)

= lim
N→∞

N−1∑
k=−N+1

r(k)e−jkω − lim
N→∞

1
N

N−1∑
k=−N+1

|k|r(k)e−jkω (7)

Given the assumption in 1, the limit quickly converges to zero, therefore:

P (ω) =
∞∑

k=−∞
r(k)e−jkω (8)

The output of the simulation is shown in figure 1. The plot of the two Power Spectral Density definitions overlaps as
long as the assumption in 1 holds; therefore, for a signal with a fast-decaying ACF (e.g. impulse), the two definitions
lead to equivalent results, whilst for the slow-decaying ACF (e.g. sinusoidal function) one the will differ. In the latter,
in fact, the periodicity of the sinusoidal signal is characterised by an ACF that decays to zero at a slower rate than the
one at which the limit approaches infinity.

1.2 Periodogram-based Methods Applied to Real–World Data
Part A Before computing the periodogram, the data were preprocessed using the Matlab functions detrend and mean

to respectively eliminate the straight-line trend, reducing the effects of the low-frequency components and average
value from the signal, removing the DC offset. Additionally, the logarithm of the data has been computed, and the
mean value is subtracted to evaluate any alterations in the data’s perception of periodicity. This greatly reduces the
peak amplitude in the time domain and enables us to identify the peak periodicity in the frequency domain, with a
dominant frequency at f = 0.56Hz and its harmonics identifiable in Figure 2. The periodogram function has been
used to estimate the spectral content of the signal at different stages of the preprocessing.
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1.3 Correlation Estimation 1 CLASSICAL AND MODERN SPECTRUM ESTIMATION
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Figure 1: Autocorrelation and PSD for impulse and sinusoidal function
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Figure 2: Sunspot time series and Periodogram

Part B The EEG data of a participant under visual stimulation is analysed to identify the SSEP (steady-state visual
evoked potential). The PSD of the EEG data was computed, and the raw and windowed data were compared as
shown in figure 3. Five main peaks can be identified in the frequency spectrum of the EEG data: one peak at 50Hz
due to electrical interference, a group of peaks around 8.6Hz due to the alpha-rhythm caused by the mental state of
the participant (tiredness), and the peaks at around 13.01Hz, 25.98Hz, and 39Hz, corresponding respectively to the
SSVEP and its two main harmonics.
Different window lengths (1s,5s, and 10s) are plotted together with the raw data in figure 3; the comparison highlights
how the window length of 10s is characterised by a decrease in variance compared to the regular non-averaged
periodogram. This is because averaging helps to decrease the noise present in the signal due to the finite length of the
data. On the other hand, a much smaller window length (1s) leads to an even more reduced variance, wider main
lobes, making it harder to identify the peak frequencies, and an overall lower resolution as the PSD is computed on
shorter segments of the signal.

1.3 Correlation Estimation

Part A The correlogram of different functions (White Gaussian Noise (WGN), noisy sinusoid and filtered WGN) was
computed using both biased and unbiased spectral estimators as defined in 9, 10.

Biased:r̂(k) =
1
N

N∑
n=k+1

x(n)x ∗ (n− k) (9)
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1 CLASSICAL AND MODERN SPECTRUM ESTIMATION 1.3 Correlation Estimation
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Figure 3: Periodogram of EEG Data with windows length of 1s,5s,10s

Unbiased:r̂(k) =
1
N

N∑
n=k+1

x(n)x ∗ (n− k)with (0 ≤ k ≤N − 1) (10)

As it can be observed from figure 4, the ACFs of all signals estimated using the unbiased method are characterised
by negative values at high large values of k, leading to negative values for the PSD as a lower number of samples
is available. Instead, the biased method assigns progressively lower weighting at higher values of k, leading to ACF
values tending to 0 when k tends to infinity (asymptotically unbiased). These observations can be traced back to
the physical mean of the two estimators: using the unbiased estimator corresponds to windowing the function with
a rectangular window, characterised by both positive and negative values (sin(x)/x = sinc function in the frequency
domain); as described in section 1.1, this does not rapidly decrease, therefore the assumption 1 does not hold for high
k close to N.
Conversely, the biased method corresponds to a triangular window, characterised by only positive-valued lobes in
the frequency domain and leading to a real-valued ACF. Since both the triangular window and the ACF are odd-
length symmetrical (symmetrical with respect to their midpoint), the PSD will result in a real-valued spectrum as well.
Therefore, the biased method, even if less close to the true mean of PSD compared to the unbiased one, conserves the
function’s physical meaning with a low number of samples and maintains lower variance.

Part B and C PSD estimate of 200 realisations of a random process were generated, and their spectrum, mean and
standard deviation were plotted on a linear (Figure 5 (top graphs)) and logarithmic scale (Figure 5 (bottom graphs)).
The signal was computed as:

noisy sinusoid = sin(2 ∗π ∗ 0.1 ∗ t) + 3 ∗ sin(2 ∗π ∗ 0.3 ∗ t) + 5 ∗ sin(2 ∗π ∗ 0.5 ∗ t) + randn(1,N ); (11)
randn(1,N) being the additive WGN with normal distribution.
The fundamental frequencies of the sinusoid are plotted on the linear scale. Having used the biased estimator, the
spectrum is real-valued and asymptotically stable. However, the standard deviation is proportionally greater around
the frequency of interest, as it is proportional to the square root of the amplitude. Independently of the number of
samples, even if averaging across different periodograms can help, this does not necessarily cancel out the noise and
inconsistency of each signal or the amplitude dependency.
When displaying the PSD in decibels, this compresses the scale and allows for a more uniform display of the PSD
over the entire range, making it easier to see the relative contributions of different frequency components while
smoothening the overall spectrum. In this case, in fact, the fundamental frequencies are identified in the lowest values
of the standard deviation spectrum.
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1.3 Correlation Estimation 1 CLASSICAL AND MODERN SPECTRUM ESTIMATION
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Figure 4: Unbiased and Biased PSD Estimation for White Gaussian Noise (WGN), noisy sinusoid and filtered WGN.

Figure 5: PSD estimate of 200 realisations of a random process, mean and standard deviation; linear scale (top) and logarith-
mic (bottom)

Part D Figure 6 shows the periodogram computed for a noisy sinusoidal signal sampled at different rates (N =
30,90,210). The signal has been defined in Matlab as:

noise = 0.2/sqrt(2)*(randn(size(n))+1j*randn(size(n)));

x = exp(1j*2*pi*0.3*n)+exp(1j*2*pi*0.32*n)+ noise;

From the plot in figure 6, it is clearly noticeable how an increased number of samples eases the identification of the
fundamental frequency of the signal against the additive noise. However, with a lower number of samples (N < 90),
we can only identify a single peak as the frequency resolution is not accurate enough compared to the half of the
distance between the peaks (fresolution = fs/N = 1/90 = 0.011 > 0.01)
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1 CLASSICAL AND MODERN SPECTRUM ESTIMATION 1.4 Spectrum of Autoregressive Processes
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Figure 6: Periodogram of a noisy sinusoidal signal with different number of samples (N)

Part E The MUSIC method was used to generate a pseudo-spectrum of the same signal described in Part D, to ease
the comparison of different PSD methodologies. The following code was used to generate the spectrum in Matlab:

[X,R] = corrmtx(x,14,’mod’); [S,F] = pmusic(R,2,[ ],1,’corr’);

The spectrogram in figure 7 show the estimated PSD using the MUSIC method. Similarly to the effect of changing the
number of samples described in the previous sections, it has been noticed that with increased order complexity (p),
the estimate is able to distinguish the two distinct peaks. In particular, with an order of 2, the two peaks are already
clearly distinguishable at 0.3 and 0.32Hz, meaning that we need to be aware of the number of peaks to choose the
order that will better represent the signal. Although this method has a greater standard deviation compared to the
standard periodogram, by estimating the mean of the realisations, we obtain a better estimate of the true signal and
its magnitude.

Figure 7: PSD estimate in dB of 200 realisations of a random process and its mean for different orders p.

1.4 Spectrum of Autoregressive Processes
Part A When using the unbiased ACF, the estimate can become more inconsistent with increased lag size due to the
reduced number of samples available. This issue, together with the use of non-stationary data, can lead to inaccurate
estimates of the AR coefficients and lead to unstable processes. To avoid the dependency on the lag size, a different
strategy can be implemented, such as the use of overlapping windows or modified ACF estimates like the Yule-Walker
or Burg methods.

Part B Figure 8 (left) shows the PSD estimation using different model orders with 1000 samples. As expected, due
to the low number of samples (under-sampling), we need a relatively complex model in order to be able to detect
the two peaks in the spectrum. In fact, with p < 10 the AR estimate only represents the strongest peak in the original
signal.
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1.5 Real World Signals: Respiratory Sinus Arrhythmia from RR-Intervals1 CLASSICAL AND MODERN SPECTRUM ESTIMATION

Part C As shown in figure 8 (right), increasing the number of samples available offers the possibility for a lower-
order system to represent the multiple peaks in the data. In particular, with 10000 samples, an order of 4 is now
sufficient to represent the two peaks in the signal. It is redundant to increase the order further as this does not
benefit the estimation whilst increasing the computation complexity; however, below p = 4 the estimate is once again
under-sampled with respect to the complexity of the model, and therefore, we lose estimation accuracy.
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Figure 8: Plot of the true PSD and PSD from autoregressive process (AR) of difference orders (4,7,11,14) for sample number
of 1000 and 10.000.

1.5 Real World Signals: Respiratory Sinus Arrhythmia from RR-Intervals

Part A The standard and averaged periodogram with different window lengths were applied to the ECG data after
separating the three R-R Intervals (RRI) and selecting the part of the signal less affected by noise and artefacts. The
results are shown in figure 9, using a window length of 50s and 300s; as expected, the wider window length allows for
capturing greater complexity of the frequency spectrum, and some peaks become identifiable, although the variance
of the data is larger.
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Figure 9: Spectrum of ECG data with standard and averaged periodogram of different window lengths

Part B For the different R-R intervals, we are expecting peaks in different parts of the spectrum, corresponding to
the breathing frequency at which the participant was asked to breathe. The breathing paces are evaluated to be
approximately 12-16 breaths per minute when breathing normally, 25 breaths per minute when breathing faster and
7.5 breaths per minute when breathing more slowly; these correspond to f = 14/60s = 0.23Hz for RRI1, f = 0.42Hz
for RRI2 and f = 0.125Hz for RRI3. Although, as expected, we can identify a peak around 0.2Hz in the spectrogram
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1 CLASSICAL AND MODERN SPECTRUM ESTIMATION 1.6 Robust Regression

of RRI1, the clear breathing frequency is hardly distinguishable due to the high level of noise and movement artefacts
in the recordings.

Part C The AR spectrum estimation is displayed in figure 10; due to noisy data, it is hard to distinguish the peaks
corresponding to the breathing frequency in the signal; this could be also caused by the multiplicity of the peaks
present across the frequency spectrum, making it harder to isolate the informative variation of amplitude against the
effects of noise. However, different model orders were tested, and the AR(10) was found to be the most suitable,
considering the trade-off between complexity and degree of freedom of representation.
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Figure 10: Spectrum of ECG data with standard periodogram and processed using AR(10)

1.6 Robust Regression
Part A We use Singular Value Decomposition (SVD) to obtain the singular values of the input data and its noisy
version (zero mean Gaussian noise). Figure 11 shows the singular values of the X and Xnoise and the square error
between the two. It is clearly observable that the input data has a rank of 3 and that beyond that singular value index,
the Square Error increases evidently. The performance of retrieval of the input data is dependent on the Signal-to-
Noise Ratio (SNR) and, therefore, on the noise variance size with respect to the magnitude of the signal. When the
magnitude of the singular values drops abruptly, it becomes, in fact, hard to distinguish the real value of the signal
against the noise. If the noise variance was even greater, leading to an increase in the magnitude of the components
outside the rank, this would have made it impossible to distinguish the rank of the matrix.
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Figure 11: Singular values and Square Error between the X and Xnoise matrices.
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1.6 Robust Regression 1 CLASSICAL AND MODERN SPECTRUM ESTIMATION

Part B We create a low-rank approximation of the matrix Xnoise using only the 3 most significant principal compo-
nents. As shown in figure 12, the error of the noisy matrices with respect to the true input data is consistently reduced
by the denoising process. This is expected as the 3 most significant singular values, as shown in the previous section,
were characterised by lower squared error whilst also containing enough information about the input data to retrieve
the original signal. However, disregarding the other singular components and due to the non-negligible SNR of the
other r most significant ones causes the denoise signal to retain a non-zero error with respect to the original data.
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Figure 12: Difference between the noisy ( Xnoise) and denoised ( Xdenoised) matrices with respect to the true signal X

Part C The parameter matrix B has been computed using Ordinary Least Square (OLS) and Principal Component
Regression (PCR), and the MSE between the estimated (Ŷ = XB̂) and real value of the output Y has been computed for
test and training data (see table 1 and figure 13). We found that the OLS performs better in the training data (lower
MSE); however, it does not generalise as well as the PCR solution in the test set. This could be an indication of the
OLS overfitting to the noise components of the training data.

Estimator Total Training RMSE Total Test RMSE
OLS 4.1425e3 3.2956e3

PCR 4.1580e3 3.2748e3

Table 1: Comparison between the Estimation MSE for the Training and Test sets using OSL and PCR

Part D Similarly to the previous section, we estimate the MSE of the estimation using OLS and PCR (table 2 and
figure 14). In this case, we test the two methods over 100 iterations using the function regval to obtain the true and
estimated output. As expected, the OLS estimation leads once again to a bigger MSE in the test set.

Estimator Total MSE
OLS 2.3414e3

PCR 2.3326e3

Table 2: Comparison between the Estimation MSE for the Test sets using OSL and PCR over 100 iterations
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1 CLASSICAL AND MODERN SPECTRUM ESTIMATION 1.6 Robust Regression
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Figure 13: Comparison between test and training estimates Ŷ, and the true output Y
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2 ADAPTIVE SIGNAL PROCESSING

2 Adaptive signal processing

2.1 Least Mean Square (LMS) Algorithm

Part A For a second-order auto-regressive process satisfying the differential equation x(n) = a1x(n−1)+a2x(n−2)+η(n)
with η(n) ∼ N (0,σ2

η ), σ
2
η = 0.25, and a = [0.1,0.8] we can find the autocorrelation matrix of the input vector x(n) =

[x(n− 1),x(n− 2)]T as:

Rxx = E{[x(n− 1),x(n− 2)]T [x(n− 1),x(n− 2)]} = E
[
x(n− 1)x(n− 1) x(n− 1)x(n− 2)
x(n− 2)x(n− 1) x(n− 2)x(n− 2)

]
=
[
r(0) r(1)
r(1) r(0)

]
(12)

With r(k) = Ex(n)x(n− k) being the autocorrelation function and computed on x(n) as:

r(k) = Ea1x(n− 1)x(n− k) +Ea2x(n2)x(n− k) +Eη(n)x(n− k) (13)

Noting that Eη(n)x(n− k) = 0 from k¿0, we can obtain r(0) and r(1) from the simultaneous equations as:

r(0) = a1r(1) + a2r(2) + σ
2
η

r(1) = a1r(0) + a2r(1) + σ
2
η

r(2) = a1r(1) + a2r(0) + σ
2
η

(14)

As a consequence, the autocorrelation matrix Rxx will be:

Rxx =
[
r(0) r(1)
r(1) r(0)

]
=
[
0.926 0.463
0.926 0.463

]
(15)

If we estimate ˆx(n), â1 and â2 using a Least Mean Square (LMS) algorithm with step size µ, its convergence will depend
on the biggest eigenvalue λmax = 1.389 of the matrix Rxx and bounded by the sufficient condition 0 < µ < 2

λmax
, giving

an upper bound for the step size of 1.440.

Part B We implement an LMS adaptive predictor using N = 1000 samples of x(n) and step size of µ or 0.05 and 0.01.
The squared prediction error in decibels for 1 realisation and the learning curve obtained from the average of 100
iterations in figure15. As expected, the error oscillated around a steady state for both step sizes as the LMS weight
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Figure 15: Squared prediction error in decibels for 1 realisation and the learning curve obtained from the average of 100
iterations

estimates fluctuate around the optimal solution; however, when averaging across numerous iterations, a noticeable
difference appears: a higher step size µ leads to faster convergence, as the update is greater, but higher steady-state
error over time, as the resolution of the update is lower.
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2 ADAPTIVE SIGNAL PROCESSING 2.1 Least Mean Square (LMS) Algorithm

Part C The misadjustments in the steady-state value of the learning curve are obtained by time-averaging over 100
independent trials the steady-state of learning curves. These values have been compared to the theoretical ones
obtained using the approximated formula for small step size:

MLM =
EMSE

σ2
η
≈
µ

2
T r{Rxx} (16)

EMSE being the excess mean square error, i.e. the difference between the mean-square error (MSE) introduced by
adaptive filters and the minimum attainable mean square error of a Wiener filter σ2

η . As can be observed from table 3,
the theoretical values of the M are close to the experimental observations M̂, with larger misadjustments for higher a
step size, similarly to what has been observed in part B.

Step Size µ Theoretical M Experimental M̂
0.05 0.0463 0.0508
0.01 0.0093 0.0125

Table 3: Comparison between the experimental and theoretical values of the LMS misadjustment for different step sizes.

Part D An estimation of the steady state values of the adaptive filter coefficients w was obtained by averaging the final
results obtained by over 100 independent trials and plotting with true coefficients’ values in figure 16. The results
were obtained using a step size of 0.05 and 0.01, confirming how a lower µ corresponds to a slower yet steadier
convergence, with reduced variance and lower bias error at steady-state.
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Figure 16: True and estimated coefficient w of the adaptive filter obtained averaging over 100 independent iterations.

Part E The leaky LMS equation 17 with leakage coefficient 0 < γ < 1 can be obtained from minimising the cost
function 18.

w(n+1) = w(n) +µ∇wJ2(n) = (1−µγ)w(n) +µe(n)x(n) (17)

J2(n) =
1
2
(e2(n) +γ ||w(n)||22) (18)

∇wJ2(n) =
1
2
∂e2(n)∂w(n) +

∂(wT (n)w)
∂w(n)

(19)

=
1
2
∂e2(n)∂e(n)

(n)
∂y(n)

∂y(n)
∂w(n)

+
∂(wT (n)w)
∂w(n)

(20)
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2.2 Adaptive Step Sizes 2 ADAPTIVE SIGNAL PROCESSING

=
2
2
e(n)(−1)x(n) +γw(n) = −e(n)x(n) +γw(n) (21)

We can then obtain the updated equation by using the formula in 17:

w(n+1) = w(n)−µγw(n)− e(n)x(n) = (1−µγ)w(n) +µe(n)x(n) (22)

Part F Figure 17 shows the effect of different µ and γ values of the estimation of the leaky LMS filter coefficients
averaged across 100 realisations. Even if the aim of the leaky LMS is to avoid instability when the autocorrelation
matrix has zero eigenvalues, this leads to worse convergence to the true values of the coefficients (higher error at
steady state). The largest values of γ lead to the worst divergence (particularly evident in the w2 due to its larger
magnitude), despite the lower oscillation for w1.
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Figure 17: Leaky LMS Filter coefficient estimation from averaging 100 realisations, comparing different leakage coefficient γ
values for high (left) and low (right) step sizes µ

2.2 Adaptive Step Sizes
Part A The performance of three versions of the Gradient Adaptive Step Size (GASS) algorithm learning rate update
ψ(n) (equations 23, 24, 25) has been compared when identifying a real-valued MA(1) system (26).

Benveniste: ψ(n) = [I −µ(n− 1)x(n− 1)xT (n− 1)]ψ(n− 1) + e(n− 1)x(n− 1) (23)
Ang & Farhang: ψ(n) = αψ(n− 1) + e(n− 1)x(n− 1),0 < α < 1 (24)

Matthews & Xie: ψ(n) = e(n− 1)x(n− 1) (25)

MA(1) system: x(n) = 0.9η(n− 1) + η(n)η ∼N (0,0.5) (26)

Introducing a variable learning rate helps overcome the trade-off between speed of convergence and steady-state
error, as discussed before; the optimal behaviour would be achieved with a large learning rate at the start and an
increasingly smaller one approaching steady-state. As expected, figures 18 shows how GASS overall outperforms the
LMS using fixed step size for 1 and 100 realisations; in particular, a very small fixed step size (µ = 0.01) has the slowest
convergence overall, whilst all three GASS have convergence speed in a similar order of magnitude to the one using
larger fixed step size (µ = 0.1), expect for Matthews&Xie.
Beneviste and Ang&Farhang both converge quicker and achieve a lower steady-state error, although the first one
overshoots before settling on the correct steady-state value for weight w0. This is given by the fact that both Beneviste
and Ang&Farhang have knowledge of the previous value of the learning rate update, making them more perceptive
to almost-instantaneous changes, whilst Matthews&Xie, despite being slower, has also a lower complexity of update
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2 ADAPTIVE SIGNAL PROCESSING 2.2 Adaptive Step Sizes

overall as it only takes into considerations the previous input and error. The lower complexity of this model leads to
worse performance than even one of the models solely using a large fixed-step update.
In general, Beneviste and Ang&Farhang achieve the best performance, although being limited by the trade-off between
variance, bias and speed of convergence on one side (better for the first one), and computational complexity on the
other side (lower for the second).
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Figure 18: Performance comparison of the weight error curve of LMS for different GASS algorithms and fixed step size.

Part B We can obtain the normalised LMS (NLMS) algorithm by the update equation w(n + 1) = w(n) + µep(n)x(n),
with ep(n) = d(n)− xT (n)w(n+1) being the a posteriori error.

First, we express the a posteriori error using the weight update equation:

ep(n) = d(n)− xT (n)w(n+1) = d(n)− xT (n)w(n) +µep(n)x(n) (27)

= d(n)− xT (n)w(n)−µep(n)|x(n)|2 (28)

Rearranging, we obtain the a posterior error in terms of the a priori error e(n):

ep(n) +µep(n)|x(n)|2 = d(n)− xT (n)w(n) (29)

ep(n) =
d(n)− xT (n)w(n)
1 ++µ|x(n)|2

=
e(n)

1 ++µ|x(n)|2
(30)

Now, we can substitute into the weight update equation and simplify:

w(n+1) = w(n) +µep(n)x(n) = w(n) +µ
e(n)

1 ++µ|x(n)|2
x(n) (31)

w(n+1) = w(n) +
e(n)

1/µ++|x(n)|2
x(n) (32)

We can then obtain the equation for the NLMS if we set ϵ = 1/µ and β = 1:

w(n+1) = w(n) +
βe(n)

ϵ++|x(n)|2
x(n) (33)

This highlights the inverse proportionality between the regularisation factor and the learning rate, leading to a
trade-off between stability and speed of convergence.

Part C The generalized normalized gradient descent (GNGD) algorithm has been used to estimate the weight coef-
ficients of a MA(1) system. As it is shown in figure 19, using the same learning rate (µ = 0.01), GNGD is consistently
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2.3 Adaptive Noise Cancellation 2 ADAPTIVE SIGNAL PROCESSING

faster in convergence to the correct weight value comparatively to GASS by Benveniste, leading to a steeper error
curve across iterations. It has to be noticed that despite it being faster, this does not lead to a worse steady-state
error, meaning that GNGD can be said to overall outperform. Furthermore, the performance can also be compared by
analysing the computational complexity of the two algorithms by counting the number of operations for each update
of ψ, w, µ and e; whilst the GASS by Benveniste has a complexity of O(M2), making exponentially more expensive as
the order increases, GNGD is characterised by lower complexity (O(M)), leading to a better performance also from this
perspective.
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Figure 19: Comparing between GASS Benveniste and GNGD algorithms for weight estimation

2.3 Adaptive Noise Cancellation

Part A We use the Mean Square Prediction Error 34 to evaluate the performance of Adaptive Line Enhancer (ALE)
and Adaptive Noise Cancellation (ANC) denoising techniques.

MSPE =
1
N

N−1∑
n=0

(x(n)− x̂(n))2 (34)

With x(n) being the clean signal and x̂(n) its estimation.
The signal s(n) to be denoised by a M > 1 ALE is composed of x(n), a unit amplitude sinusoid of angular frequency
ωo = 0.01π, and η(n), coloured noise generated using the moving average filter (η(n) = v(n) + 0.5v(n− 2)). To find the
minimum delay ∆ of the ALE, we start by analysing the effect of the noise correlation on the linear predictor:

MSPE = E{(s(n)− x̂(n))2} = E{(η(n) + x(n)− x̂(n))2} = E{x(n)− x̂(n)}+2E{(x(n)− x̂(n))η(n)}+E{η(n)2} (35)

Given that there are only two terms depending on the noise level η and that E{η(n)2} constitutes a lower bound for
MSPE entirely dependent on the noise power, the only term we can minimise is E{(x(n)− x̂(n))η(n)}. Assuming x(n and
the noise are uncorrelated, we can then disregard the first component and then substitute the equation of the η and x
to get:

E{(x(n)− x̂(n))η(n)} = E{x̂(n))η(n)} = E{(v(n) + 0.5v(n− 2)) ∗wT x} (36)

= E{(v(n) + 0.5v(n− 2)) ∗
M∑
i=0

wi(x(n−∆− i) + η(n−∆− i))} (37)

Assuming that v and x are uncorrelated, the first term of the sum is zero, therefore:

E{x̂(n))η(n)} = E{(v(n) + 0.5v(n− 2)) ∗
M∑
i=0

wiη(n−∆− i))} (38)

= E{(v(n) + 0.5v(n− 2)) ∗
M∑
i=0

wi(v(n−∆− i) + 0.5v(n−∆− i − 2))} (39)
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2 ADAPTIVE SIGNAL PROCESSING 2.3 Adaptive Noise Cancellation

Given the above, if ∆ > 2, the equation is equal to the expectation of the uncorrelated noise samples, meaning the
term goes to zero.
This result is confirmed by the results in figure 20, in which it can be observed that across 100 realisations of the
denoising process, the retrieval of the original signal from the noisy one is far better with a ∆ > 2, as the noise effects
are attenuated. However, it can also be observed that x̂(n) suffers from a slight phase shit compared to the original
signal when the delay increases As shown in figure 20

Figure 20: Denoising results using ALE with variable delay ∆

Part B The results of applying ALE across 100 realisations with variable delay and filter order are shown in figure
21. As expected, the Mean Square Prediction Error is significantly lower when using a ∆ = 3 across all orders as this
delay allows a better noise performance whilst avoiding an increased phase shift; similarly, the order M also affect the
MSPE as a greater M will allow fitting to the complexity of the model (avoiding under-fitting), but if the M increases
further, this leads to a higher MSPE due to overfitting. The sweet spot for this system is found at M = 7 and ∆ = 3.
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Figure 21: Dependence of ALE performance (in terms of MSPE) upon delay ∆ and filter order M

Part C We implemented the Adaptive Noise Cancellation technique and tested on the signal defined in the previous
sections. As can be seen from picture 22, using ANC instead of ALE leads to a low MSPE (MSPEALE = 0.173 and
MSPEANC = 0.068) and better overall performance, even though it takes some time for the ANC denoising process to
converge. Therefore, ANC would be more suitable only if we have a large number of samples; otherwise, the ALE is to
be preferred despite its greater steady-state error thanks to the speed of its convergence.
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Figure 22: Comparison between ALE and ANC denoising performance.

Part D We use the ANC strategy to denoise EEG data from the POz electrode (original signal in figure 23). The
denoising results for different learning rates and model orders are compared in figure 24. In this section, we focus on
removing the 50Hz interference present in the data. As it can be observed, a greater model order enables better noise
removal up to around M = 20, after which overfitting occurs, and we observe power attenuation around the frequency
of the interference. Moreover, the size of the learning rate µ used also influences the performance, characterised
by a trade-off between greater attenuation of the noise and the attenuation of the original signal as well. To avoid
overfitting and obtain effective noise removal, a sweet spot for this system is found at around µ = 0.05 and M = 25.
These results are also confirmed by the spectrograms in figure 25.
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Figure 23: Raw EEG data from POz electrode with interference at 50Hz.
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Spectrogram using ANC with variable M and 

Figure 24: Effect of different learning rates µ and model orders M on the denoising performance of ANC on EEG data (Time-
Frequency Diagram)
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3 WIDELY LINEAR FILTERING AND ADAPTIVE SPECTRUM ESTIMATION

3 Widely Linear Filtering and Adaptive Spectrum Estimation

3.1 CLMS and Widely Linear Modelling

Part A Given the first order Widely Linear Moving Average process WLMA(1) (plotted in figure 26):

y(n) = x(n) + b1x(n− 1) + b2x ∗ (n− 1) (40)

with x(n) ∼N (0,1), b1 = 1.5+1j, b2 = 2.5− 0.5j

We obtain the circularity coefficients of the signal as ρWGN = 0.053 and ρWLMA = 0.864 by using the formula ρ = E{zz∗}
E{zzT } .

This confirms the circularity of WGN, as opposed to the low values for WLMA.
Then, we apply the Complex LMS (CLMS) and Augmented Complex LMS (ACLMS) to identify the processes. The
results shown in figure 26 confirm that the CLMS performs poorly with non-circular data, whilst ALMS adapts better
to any type of complex data due to its augmented input vector that enables greater degrees of representation.
This is also confirmed by the plot of the learning curve in figure 26, in which the squared error of CLMS across
alliterations is consistently larger, although the convergence of ALMS is not as immediate.
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Figure 26: Comparison of CLMS and ACLMS performance in identifying (non-circular) WLMA(1).

Part B The bivariate wind data of the wind speed is combined to obtain complex-valued data (v(n) = vEST + j ∗
vNORTH), and CLMS and ALMS are applied to identify the underlying process.
We first compute the circularity of the different wind intensity (low, medium, and high wind plots in figure 27),
respectively ρlow = 0.160, ρmedium = 0.454, ρhigh = 0.624. As the low wind data has an overall lower circularity, we
would expect the ACLMS to perform comparatively better with this data. This is confirmed by figure 28, in which the
behaviour of the CLMS and ALMS MSPE is plotted across different model orders. It can be noticed that with relatively
low model orders (M > 10 for low wind data), the ACLMS outperforms CLMS and reaches the minimum error in all
three datasets. However, if the model order is increased further, the ACLMS starts to overfit the noise to the point in
which the error is greater than the one using the simpler CLMS algorithm. Therefore, we can say that the model order
of the algorithm has to be chosen very carefully in order to minimise MSPE; otherwise, the extra degree of freedom of
the ACLMS over CLMS becomes detrimental to the overall performance due to noise.
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Figure 27: Plots of the bivariate wind dataset divided by wind intensity; highest circularity in the high wind group
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Figure 28: Effect of the order M on the performance (in terms of MSPE) of ACLMS vs CLMS

Part C Three sets of complex voltages are generated as shown in figure 29, respectively a balanced system, a mag-
nitude unbalanced and a phase unbalanced one. It is clearly noticeable how the circularity of the system is evidently
impacted by their balance. In fact, to a misalignment in magnitude or phase of the three phases follows a clear decrease
in the circularity coefficient (ρbal = [3.995e − 16] ≈ 0, ρVunbal = [0.228,0.533,0.866], ρφunbal = [0.330,0.134,0.348]).
Therefore, by looking at the circularity coefficients, it is very intuitive to identify and quantify a fault in the power
system.
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Figure 29

Part D Given strictly linear and widely linear autoregressive models of order 1:

v(n+1) = h∗(n)v(n) (41)

v(n+1) = h∗(n)v(n) + g∗(n)v∗(n) (42)

We derive the frequency of the balanced complex voltage (v(n) =
√
2/3V ej(2πn

fo
fs
+φ))from the h(n) coefficients by

substituting the balance voltage equation into 41:

v(n) =
√
2/3V ej(2π(n+1)

fo
fs
+φ) = h∗(n)v(n) =

√
2/3V ej(2πn

fo
fs
+φ) (43)

Leading to the complex conjugate of h(n) to be:

h∗(n) = ej (arctan(
Im{h}
Re{h}

)) = ej (2π
fo
fs
) (44)
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Therefore, we can obtain the oscillation frequency as:

2π
fo
fs

= −arctan( Im{h(n)}
Re{h(n)}

) (45)

With the minus indicating the rotation of the system, we obtain:

fo =
fs
2π
arctan(

Im{h(n)}
Re{h(n)}

) (46)

Now, we derive the frequency of the unbalanced complex voltage (v(n) = A(n)ej(2πn
fo
fs
+φ) +B(n)e−j(2πn

fo
fs
+φ).

Given that:

A(n) =

√
6
6

(Va(n) +Vb(n)e
j∆b +Vc(n)e

j∆c ) (47)

B(n) =

√
6
6

(Va(n) +Vb(n)e
−j∆b+2/3π +Vc(n)e

−j∆c−2/3π) (48)

Similarly to what was done for the balanced system, we substitute the voltage equation into 42, although in this case,
we can separate between the terms with positive and negative exponentials:

A(n+1)ej(2πn
fo
fs
+φ) = h∗(n)A(n) + g∗(n)B∗(n) (49)

B(n+1)e−j(2πn
fo
fs
+φ) = h∗(n)B(n) + g∗(n)A∗(n) (50)

Assuming the rate of change of the voltage magnitudes over time is negligible, we can consider A(n+1) ≈ A(n) and
B(n+1) ≈ B(n), therefore:

e
j(2πn fofs +φ) = h∗(n) + g∗(n)

B∗(n)
A(n)

= conj(e−j(2πn
fo
fs
+φ)) = h∗(n) + g∗(n)

A∗(n)
B(n)

(51)

e
j(2πn fofs +φ) = conj(e−j(2πn

fo
fs
+φ)) = h∗(n) + g∗(n)

A∗(n)
B(n)

(52)

h∗(n) + g∗(n)
B∗(n)
A(n)

= h(n) + g(n)
A(n)
B∗(n)

(53)

h∗(n)(
B∗(n)
A(n)

) + g∗(n)(
B∗(n)
A(n)

)2 = h(n)(
B∗(n)
A(n)

) + g(n) (54)

g∗(n)x2 + (h∗(n)− h(n))x − g(n) = 0 (55)

Obtaining a second order equation in x = B∗(n)
A(n) . We can now find the solution for the equation:

x =
(h∗(n)− h(n))±

√
(h∗(n)− h(n))2 +4g∗(n)g(n)
2g∗(n)

(56)

Since (h∗(n)− h(n)) = 2jIm{h(n)} we substitute and simplify to obtain:

x =
jIm{h(n)} ±

√
Im2{h(n)} − ∥g(n)∥2
g∗(n)

(57)

By substituting x into 51 and simplifying, we obtain:

e
j(2πn fofs +φ) = h∗(n) + jIm{h(n)} ±

√
Im2{h(n)} − ∥g(n)∥2 (58)

e
j(2πn fofs +φ) = Re{h(n)} ±

√
Im2{h(n)} − ∥g(n)∥2 = ej∗arctan(

±
√
Im2{h(n)}−∥g(n)∥
Re{h(n)} ) (59)
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Therefore, we can also obtain the oscillation frequency as:

2π
fo
fs

= arctan(
±
√
Im2{h(n)} − ∥g(n)∥2

Re{h(n)}
) (60)

fo =
fs
2π
arctan(

√
Im2{h(n)} − ∥g(n)∥2

Re{h(n)}
) (61)

Part E We can use CLMS and ACLMS algorithms to estimate the operating frequency of the power systems. Figure
30 shows the performance comparison using the two strategies on the systems presented in the previous sections.
As expected, the CLMS is ideal for estimating the balanced system due to its near-perfect circularity, leading to no
estimation bias and faster convergence compared to ACLMS. However, for unbalanced systems, the error of both
estimators is far greater, with wide oscillations for CLMS and more stable convergence with ALCMS. The high steady-
state error could be due to the inappropriate choice of the model order.
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Figure 30: Frequency estimation of three-phase voltage systems using CLMS and ALCMS.

3.2 Adaptive AR for Time-Frequency Estimation

Part A We generate a frequency modulated (FM) signal y(n) = ej(2πfsφ(n)) + η(n) with η(n) being circular complex-
valued white noise with zero mean and variance of 0.05 and find the AR(1) coefficients; however, as it can be seen
in figure 31, an AR(1) system cannot completely capture the varying frequency nature of the signal, as it represents
only one frequency component at around 200Hz. Therefore, we plot the power spectrum of also higher-order systems
to identify multiple frequency components; we obtain that with AR(M) with M¿10, we start to see two main peaks,
clearly distinguishable with AR(20).
Although this method might be able to identify the segments with constant frequency, it does not capture the FM
nature of the signal. Therefore, we divide the signal into the three components and analyse their power spectrum
separately (figure 32). In this way, the part of the signal characterised by constant frequency (0 < n < 500) is still well
identified by all model orders, with higher precision with increasing complexity; however, we also obtain that mean
frequency and even the frequency range of the other two segments is more accurately captured, particularly by the
higher order systems (100-350Hz for501 < n < 1000 and 100-500Hz for 1001 < n < 1500). Although this constitutes
an improvement, this method still does not capture the non-stationary nature of the signal.

Part B Conversely to a simple AR system, using a CLMS method to identify the frequency of a signal can help us
explain the temporal characteristics of the frequency behaviour, thanks to its iterative approach to the coefficients
updates and the circularity of the data. As can be seen in figure 33, the time-frequency diagram obtained using
CLMS clearly expresses the frequency modulation of the signal, with increased accuracy when the learning rate of the
algorithm is greater (µ = 0.1). For lower values of µ, the CLMS convergence is not fast enough to properly capture
frequency behaviour in the beginning samples, and the overall accuracy is lower, although this estimate is characterised
by lower variance.
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Figure 31: FM signal and its power spectrum estimation using different AR systems
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Figure 32: Power spectrum of different segments of the FM signal comparing the results with different AR complexity

Figure 33: Time-Frequency diagram of the FM signal using CLMS with different learning rates

3.3 A LMS Real-Time Spectrum Analyser

Part A & B We can represent a signal y(n) using its Fourier transform, i.e. a linear combination of N harmonically
related sinusoids and

ŷ(n) =
N−1∑
k=0

w(k)ej2πkn/N (62)

If we represent this in vector form ŷ = Fw, we can find the optimal weights by minimising the estimation error, i.e.
the sum of square errors across all samples:

minw∥y− ŷ∥ =minw
N−1∑
n=0

∥y(n)− ŷ(n)∥2 (63)

This can be also expanded as:

24
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∥y− ŷ∥ = (y− ŷ)H (y− ŷ) = (y-Fw)H (y-Fw) (64)
= yHy− yHFw−wHFHy+wHFHFw (65)

To minimise this, we differentiate and obtain the optimal weights:

∂∥y− ŷ∥
∂w

= 0− yHF− FHy+2FHFw (66)

w = (FHF)−1FHy (67)

Finally, the estimation of y can be computed as:

ŷ = Fw = F(FHF)−1FHy (68)

Therefore, the estimated signal ŷ can be defined as one of the projections of y onto the columns space of the matrix
1
N F (N orthonormal basis) that minimises the error (as defined in 63). The projection matrix is then P = F(FHF)−1FH .

Part C We implement the DFT-CLMS and test it on the FM signal from the previous section (3.2). Figure 34 shows
the Time-Frequency diagram of the signal; although this estimate is more accurate compared to the one based on the
AR system, as it captures more individual frequency components, this is still not suitable for representing the non-
stationary behaviour. As we can observe from the spectrum, once a component appears in the diagram, it will remain,
propagating across all following samples. A solution to this would be to introduce the leaky version of the DFT-CLMS.
This, in fact, takes into account the temporal features by using a leakage factor, as previously discussed. Figure 34
shows how increasing γ indeed makes the system more sensitive to non-stationary behaviour, although it ultimately
leads to a far greater variance if the leakage coefficient is too large (γ = 0.1).

Figure 34: DFT-CLMS (γ = 0) and Leaky DFT-CLMS estimation for he time-frequency behaviour of a FM signal

Part D We use the DFT-CLMS to analyse EEG data from the POz electrode. From the Time-Frequency diagram in
figure 35, we can clearly identify the noise interference at 50Hz and other frequency components, such as the 8.6Hz
components due to the alpha-rhythm and the steady-state visual evoked potential (SSVEP) at 13Hz. Since the EEG
data is fairly stationary, it is sufficient to use the standard CLMS with γ = 0. Although this is an effective representation
of the EEG data, this method is computationally expensive and ultimately less clear than the initial power spectrum.
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Figure 35: Time-Frequency diagram of EEG data obtained using DFT-CLMS
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4 FROM LMS TO DEEP LEARNING

4 From LMS to Deep Learning
4.1
Figure 36 shows the plots of the zero mean signal and its one-step ahead prediction using AR(4) and µ = 0.00001.
Due to the low learning rate, the estimation is not characterised by fast convergence, with a large error in the initial
samples. However, the estimation ultimately converges with low steady-state error. Overall, this estimator leads to a

high MSPE (MSPE = 40.094) and low prediction gain (Rp = 10log10
σ2y
σ2e

= 5.197), indicative of a high error variance.

This highlights how this method might not be the most suitable for this type of estimation.
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Figure 36: AR(4) LMS estimation

4.2
We add non-linearity to the output of the LMS by using tanh as an activation function. The resulting dynamical
perceptron is now suitable to capture the non-linear behaviour of the data and its frequency fluctuation; however,
the limited range ([−1,1]) of the tanh (coefficient a = 1) forces the estimation to a narrow range of values (figure
37), not representative of the magnitude of the data, and this leads to bad overall performance (MSE = 196.730 and
Rp = −23.190).
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Figure 37: LMS estimation using tanh activation

4.3
The natural solution to the limitation described in the previous section is to use a coefficient a to expand the range
of the activation function. The best performance is obtained when using a coefficient of 80, achieving maximum
prediction gain and minimum MSE (MSE = 4.784 and Rp = 16.494). Increasing or decreasing the value of a leads to
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worse performance, as the sweet spot is found when the range of tanh targets the peak-to-peak range of the original
signal, given that this is symmetrical around 0. Although this method gives an enhanced performance, its success is
based on the assumption that we know the amplitude of the signal, which may not always be the case.
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Figure 38: LMS estimation using 80 ∗ tanh activation

4.4

Assuming the signal is a non-zero mean, the activation function needs to take into account the bias of the system.
The bias in the activation function (a ∗ tanh(wT x+ b)) has been implemented considering the ‘augmented’ input to the
algorithm as [1,x]T . We retrieve the original non-zero mean signal x and plot with the estimation resulting from the
new activation function in figure 39. Since we have a bias, the best a coefficient is adjusted to 50, corresponding to
the max amplitude of the original signal, resulting in MSE = 3.716 and Rp = 12.241. This performance is lower than
without the bias due to the convergence time of the estimator in the beginning samples.
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Figure 39: LMS estimation using tanh activation and bias.

4.5

To take into account the limitation in the speed of convergence discussed in the previous section, we can pre-train
the weight to overfit to some initial sample. In this case, we compute winitial for 100 iterations and 20 samples. The
resulting estimation is plotted in figure 41, giving an improvement in performance (MSE = 13.630 and Rp = 12.270)
compared to the non-pre-trained LMS, as expected.
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Figure 40: Pre-trained LMS estimation using tanh activation and bias.

4.6
Backpropagation is the process of propagating the errors back through the network, fine-tuning the weights of the
individual neurons. The training process consists in iterating between two steps until the training error reaches a
minimum:

• Forward Propagation the input x is fed into the network, and the output is calculated by applying the weights
w to each neuron and passing the result through the activation function (e.g. tanh(wT x)). Then, the training
error between the predicted and the actual y is calculated using a given cost function (e.g. 1

2 |y − ŷ|).

• Backward Propagation The error is propagated back through the network by computing the partial derivatives
of the cost function with respect to each weight. The weights are then updated using optimization techniques
such as gradient descent; then, the network computes the forward pass for the next epoch, and the iterative
process continues until convergence to a low error.

Figure 41: Backpropagation diagram from the assignment notes.

4.7
A 4-layer deep network with a learning rate of 0.01 and noise power of 0.05 has been trained and tested, and compared
against the performance of simple dynamical perceptron with linear and tanh activation (input and out signals in
figure 42). It can be observed from figure 43 that the Deep Network follows the behaviour of the true output more
closely during training and ultimately results in a more accurate test output. This is due to the higher complexity
of the network that, conversely to the linear dynamical perceptions, enables to model the non-linear behaviour of
the data. Furthermore, the tanh activation function of the second perception, despite being non-linear, has a very
limited degree of representation compared to the deep network, resulting in a very similar performance to one of the
other perceptron. Furthermore, the learning curves in figure 44 highlight how the deep network, despite having a
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lower convergence speed due to its complexity, achieves the lowest training error and consistently lower test error.
Therefore, the deep network performance is characterised by a trade-off between speed of convergence and stability
on one side and low test error on the other.

Figure 42: Input data x and output prediction y for test and training epochs

Figure 43: Comparison of the y prediction using different models across training and test sets, σ2 = 0.05

4.8
When testing the three networks with different noise power values, we start to observe that the benefits of using a
deep network over the perceptron highlighted in the previous section are not always true, depending on the amount
of noise. If the noise power is reduced (σ2 = 0.005) (figure 45 and 46), the deep network achieves even lower test
error levels compared to the ones from the perceptions (despite some instability due to weights initialisation at the
beginning). However, if the noise power is large (σ2 = 0.5) (figure 45 and 46), the stability of the deep network
performance across all epochs is compromised by oscillations due to instability. In this case, despite the deep network
achieving lower training error, it does not generalise well in the test set as it overfitted to noise during training;
therefore, with large noise power, a dynamical perception architecture is preferable thanks to its high noise sensitivity.
Therefore, the choice of predictor should depend upon the amount of noise in the signal, considering the unavoidable
trade-off between computation complexity, speed of convergence and instability on one hand and higher degrees of
representation and lower test error on the other.
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Figure 44: Comparison of the learning curve for Single Neuron with linear and tanh activation, and Deep Network (respec-
tively), σ2 = 0.05

Figure 45: Comparison of the y prediction using different models across training and test sets, σ2 = 0.005

Figure 46: Comparison of the learning curve for Single Neuron with linear and tanh activation, and Deep Network (respec-
tively), σ2 = 0.005

Figure 47: Comparison of the y prediction using different models across training and test sets, σ2 = 0.5
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Figure 48: Comparison of the learning curve for Single Neuron with linear and tanh activation, and Deep Network (respec-
tively), σ2 = 0.5
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