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1 Abstract
Wheel-E is a smart and autonomous wheelchair aimed at chil-
dren with severe disabilities. The system includes three unique
features: a social navigation system that applies proxemics
and ’social awareness’ metrics to the autonomous path plan-
ning; a sentiment analysis model which classifies the user state
and allows the wheelchair to adjust the velocity accordingly;
a laser pointer that functions as a directional indicator of
the wheelchair’s movements. Wheel-E is expected to improve
the wheelchair user’s comfort navigating social environments,
whilst enhancing the level of trust in the system of external
people interacting with it.
This report will start by analysing the current research trends
when developing smart wheelchairs, then describe the design,
development and testing of our system, and, finally, evaluate
the research hypotheses investigated.

2 Introduction
Young wheelchair users with severe disabilities spend the
majority of their time in familiar and indoor environments,
such as hospitals, their homes, or schools. Despite their
familiarity with these places, the dynamism of these environ-
ments often prevents them from being able to navigate them
independently. This lack of accessibility can lead to feelings
of frustration, isolation, and dependence on others and neg-
atively impact the cognitive development of the child [1].
By creating more autonomous and adaptive smart systems,
wheelchair users can have greater autonomy and control
over their daily lives.
Moreover, a recent study by Zhang et al. [2] has highlighted
how integrating situational awareness and adaptability in
smart wheelchairs can significantly help users with tasks
such as social navigation and interaction. However, the pri-
mary consideration in developing such a system is finding an
equilibrium between customization and user burden. Hence,
the need for a design with sensory capabilities to enhance
the contextual awareness of the environment and the user’s
emotions should be prioritised.
As a consequence of these considerations, the target use case
for our wheelchair is the social navigation of pre-mapped,
familiar environments, and the target customers are young
users with severe disabilities, for which manoeuvring a joy-
stick would be a challenging or impossible task. For this
purpose, our wheelchair can be fully controlled by simply
tapping on a screen or using vocal commands. This, in con-
junction with the situational and user-state awareness of our
system’s movement controller and path planner, is expected
to enhance the experience of children users, their carers, and
even pedestrians occasionally interacting with the wheelchair.

2.1 Hypotheses
This project aims to investigate the following research hy-
pothesis:

• H1 Using a path planner integrated with situational
awareness and proxemics measures into the planner of
the wheelchair will improve:

– the comfort of the children using the wheelchair.

– the trust in the system of external people interact-
ing with it (e.g. carers, pedestrians).

• H2 Using a motion planner that takes into considera-
tion the user’s emotional state will enhance the comfort
of children using the smart wheelchair.

• H3 Using a laser-based directional indicator to antic-
ipate the motion of the wheelchair will enhance the
trust in the system of the external people interacting
with it.

We use two standard metrics to evaluate our system: the level
of comfort of the user, from the perspective of the children
in the wheelchair, and the level of trust in the system, for
external interactions. These concepts will be defined in the
evaluation section.

3 Background
Assistive technology (AT) can empower individuals with dis-
abilities to perform tasks that would otherwise be unattain-
able [3], expanding their opportunities for self-expression
and a renewed sense of identity, as noted by [4]. In particular,
according to [1], the development of critical cognitive skills
in children with disabilities has been linked to increasing
motor abilities that lead to greater sensory experiences. The
growth in these skills is believed to result from the naviga-
tional and sensory awareness requirements associated with
early child mobility. Similarly, research focused on power
mobility usage by individuals with significant motor chal-
lenges has found that such use can lead to improvement in
cognitive and social function, increased participation, and
decreased ”learned helplessness” [5]. This is believed to be
a result of the navigational and perceptual experiences and
learning associated with using a wheelchair [6].
However, for children with severe disabilities, the opportu-
nities for independent mobility are often very limited due
to their difficulty or impossibility to manoeuvre a joystick,
constituting a further challenge when navigating a social,
dynamic environment.

Another problem with smart wheelchairs, and AT in gen-
eral, is that the user might be subjected to stigmatization,
leading to negative social and psychological consequences.
Wheelchair users often face a range of negative attitudes
and stereotypes, causing social isolation and discrimination
and affecting their mental health and well-being. In the
long term, this may prevent individuals from embracing and
utilizing the wheelchair to its fullest potential. By develop-
ing more socially-aware wheelchairs and designing a user
interface that adapts to the user state, we can help reduce
the stigmatization of wheelchairs and enable the full em-
powerment of children with disabilities, making sure the
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wheelchair does not simply assist but also evaluates the ap-
propriate time to do so.
From this, we have identified three key factors influencing
the quality of the user experience and human-wheelchair
interaction, which will be analysed in the following sections.

3.1 Social Navigation
A large part of this project is making the wheelchair expe-
rience more comfortable in environments involving pedes-
trians. Literature on this subject is split into two broad
categories; predicting the interaction of humans with objects
in the environment, such as walking towards a door, and pre-
dicting the interactions of humans with other mobile entities.
The solutions this project investigates focus on human inter-
action and etiquette, mainly in order to mitigate the need
for extensive object detection and overly complex models.
Some papers such as [7] attempt to use machine learning
techniques, such as an LSTM in this case, to learn the social
etiquette rules from human motion. However, this method
will not be used due to both high complexity and lack of
training data available relevant to our use case.

This thesis [8] on Probabilistic Qualitative Representation in
Human-Robot interaction describes the use of probabilistic
distributions in cost maps for path planning around mobile
people. The paper suggests using a 2D Gaussian to give the
cost of moving close to a human with the Gaussian shape
based on the direction and speed of a human; allowing for
more natural path planning with the robot able to move into
high-cost areas if unable to take any other route. The use
of a Gaussian as a representation of human motion in cost
maps appears to be a common approach [9] although many
alternatives exist, such as Qualitative Trajectory Calculus [9].
The Gaussian approach provides a lower computational cost,
however, and appears sufficient for the scenarios investigated
in this project.

In addition to predicting the human location, it is also im-
portant to consider where a robot should move relative to
a person. A study by Morales et al. [10] identified key
elements for a more human-aware smart wheelchair, both
with respect to the wheelchair passengers and surrounding
pedestrians:

1. The wheelchair velocity should be limited to a human
walking pace (around 1m/s in normal conditions, and
acceleration should be limited.

2. The system should avoid zigzagging, which may cause
pedestrians to change their course.

3. The wheelchair should be prevented from invading
pedestrian personal space and minimize the need for
evasive action.

4. Even when there are no pedestrians present, passen-
gers prefer the wheelchair to stay on one side of the
passage.

These elements will be taken into account in the determina-
tion of the movement algorithm and velocity control along-
side the user’s emotional state (see Section 3.5.2). Specifi-
cally, the route planning will consider the avoidance of the
human Comfort Zone (CZ) by using proxemics-based metrics.

Building upon a study by Ali et al. [11], we aim to predict
people’s CZ and trajectory by analysing the head and body
positioning of the pedestrians, as detected by the ZED 2i
camera. Not only will this improve the people avoidance
strategy, but also it will allow us to explore novel scenarios.
In particular, a possible further expansion will be to relate
the pedestrians’ body language with the wheelchair user’s
emotional data to identify situations in which the interaction
is intentional, i.e. when the two parties want to engage.
In such a case, the wheelchair user might benefit from an
adjustment in the path planning that overrides the default as-
sumption to avoid people’s trajectory when moving towards
an alternative target.

3.2 Sentiment Analysis
Previous works on the subject [12, 13] have used various
biofeedback methodologies, such as electroencephalogram
(EEG) or myoelectric signals-based ones, to measure the emo-
tional and physical state of the user and control wheelchair
behaviour accordingly. However, these interfaces are of-
ten invasive and can be perceived as constrictive, making
them unsuitable for children. Moreover, these types of in-
terfaces can draw unwanted attention to the user, creating
a stigma around them. Hence, we believe a less invasive
approach using a camera that measures the emotional state
would improve user comfort. Other studies [14] have utilised
facial expressions and movement to fully command smart
wheelchairs (including stop, go, and turning motions). How-
ever, these also saw several drawbacks; namely, they required
large head movements from the users to discern the intended
motion commands. As well, testing revealed that users often
intuitively looked at obstacles they were approaching; this
moved the wheelchair closer towards obstacles increasing
the risk of accidents. Furthermore, the above control meth-
ods required large amounts of user attention to operating the
wheelchair, increasing the cognitive workload on the user
and reducing engagement with their surroundings.
Following these considerations, we hypothesised that a bet-
ter balance between personalisation and user burden could
be achieved by restricting emotion control-based feedback
to motion features, such as velocity and acceleration, rather
than the trajectory planning itself.

3.3 Directional Indicators
Past studies about motion indicators include the use of a
single laser pointer dot to indicate and set the close-range
motion of the wheelchair [15] and the use of Hololens to
display the trajectory information to the user [16]. While
the projection of a single dot is an efficient means of indi-
cating the destination of the wheelchair, it does not convey
information about the path taken by the wheelchair. A path
projection would allow the user and others in the environ-
ment to better anticipate the motion of the wheelchair. The
use of the Hololens allowed only the user to observe the path
of the wheelchair through an augmented reality headset.
Along with the path information, this method displayed the
possible collision points with the objects around, the users’
raw input and the corrected output path of the wheelchair.
Even though this implementation offers more detailed infor-
mation to the user, it utilises equipment which is expensive
and may draw unwanted attention to the user. The laser
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path indicator (proposed in H3) offers a more inexpensive
approach to display path information. As well allows for bet-
ter anticipation and understanding of the motion for the user,
pedestrians, and caretakers. Moreover, a paper by [17] sug-
gests how providing explanations about a robot’s behaviour
affects the degree of human trust in the system, a useful
result when considering our addition of a directional indi-
cator to the wheelchair, as this can also be considered as a
descriptor of the system’s behaviour.

4 System Design

4.1 Control & Infrastructure

The wheelchair comprises three control subsystems; an Nvidia
Jetson running object detection and SLAM, a RaspberryPi
that interfaces with the CANBUS system on the wheelchair
and an external laptop running both roscore and the central
path planning and human interface programs. The Raspber-
ryPi interfaces with the laptop through a WebSocket connec-
tion, receiving commands converted from VelocityTwist

messages on the /cmd vel topic to a data format the CAN-
BUS can understand. These messages published to the
/cmd vel topic allow programs to set the forward velocity of
the wheelchair in addition to the z-axis rotational velocity.
Figure 4 shows the ROS nodes infrastructure of the whole
system.

Figure 1: Overall System Architecture

4.2 Model & Simulation

To aid in design verification and functionality testing, a 3D
model of the wheelchair was developed in Solidworks and
ported from an STL design into a URDF model. Alternatives
of this approach were to develop the model using Blender
or Fusion 360, however these involved longer development
times. The model was then iterated upon to tune the inertial
behaviour of the model, alongside the addition of sensors
and drive controllers, to reflect the physical properties and
behaviour of the real wheelchair when used in a Gazebo
simulation. Once the final wheelchair model was completed
(Figure 2), it could be used in the Gazebo simulation. A
Python program was developed to automatically generate a
URDF model of the working environment, given an array of
dimensions. Simulated external actors were also added to aid
the implementation of algorithms interfacing the wheelchair
with external users, providing a reliable platform for the
development and testing of the various stacks of wheelchair.

Figure 2: Wheelchair and final simulated model

4.3 Environment Perception
The purpose of the perception system is to provide a detailed
map of the environment, including obstacles such as objects,
and humans, while also delivering accurate odometry data
for the position and orientation of the wheelchair. The per-
ception system is crucial for the safe and efficient navigation
of the robotic wheelchair in its operating environment. In
this section, we discuss the choice of hardware and software
components, the integration of ARUCO localisation, and the
rationale behind these choices.

Figure 3: Single Environment Facing Camera Architecture

The robotic system utilizes the Stereolabs Zed2i stereo cam-
era for environmental perception. This camera features an
IMU, magnetometer, and barometer, providing rich sensor
data for the perception system. The Zed2i camera is con-
nected to an NVIDIA Jetson Orin platform, responsible for
running the full computer vision stack and outputting the
processed information to other subsystems. The perception
software stack is primarily built upon the Zed SDK, wrapped
in a ROS node that receives data streams from the camera
and performs sensor fusion with the onboard sensors. This
produces high-level ROS topics, such as odometry, depth,
and point cloud data. The second component in the per-
ception software stack is the Real-Time-Appearance-Based-
Mapping (RTABMAP) [18] ROS node. This node consumes
the information generated by the Zed SDK and outputs a 2D
occupancy grid, representing the surrounding obstacles as a
2D map that is compatible with the path planning algorithm
within the navigation stack.

The choice to use the Stereolabs Zed2i stereo camera and its
accompanying Zed SDK was made after evaluating alterna-
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tive options, such as using a regular camera and developing
custom computer vision and localization algorithms. The
Zed2i camera and Zed SDK were chosen for several reasons:

1. Maturity and Integration: The Zed SDK is a ma-
ture system with seamless integration with the Zed2i
camera and sensor hardware, ensuring optimal perfor-
mance.

2. Modularity: Utilizing an external, standardized sys-
tem like the Zed SDK allows for easier replacement
or upgrading of the computer vision and localization
stack if needed in the future.

3. Professionally Developed & Real-Time Optimised:
The Zed SDK is a professionally developed solution that
offers a set of highly optimized, real-time computer
vision and SLAM pipelines that are compatible with
ROS.

During the development of the Perception system, different
implementations were tested, to increase the overall system
performance. Two possible strategies were developed and
tested as part of this. The first approach was to increase
the sensor count and add a second stereo camera. In this
approach, the data from the two cameras would be fused to
produce one single odometry data stream of higher accuracy.
This was achieved by implementing an ’Extended Kalman
Filter’ [19] which would output a single fused odometry
topic that would be consumed by the RTAB-Map Node to
produce a better occupancy grid and subsequently enable
better performing navigation.

Figure 4: Dual Environment Facing Camera Architecture

The second approach to improve the performance of the
odometry was an ARUCO localisation system. For this sys-
tem, ARUCO markers are placed at known locations within
the robot’s operating environment, such as various points
within a hospital. Since in environments with highly ho-
mogeneous or repetitive layouts, it may not be feasible to
rely solely on visual SLAM for accurate localization, by using
ARUCO markers, the robot can re-calibrate its position on the
map whenever it detects a marker. This is possible because
the marker’s absolute position on the map is known and its
relative position with respect to the wheelchair frame can be

computed. Although the first dual-camera approach showed
promising results in the simulated Gazebo environment, the
approach was abandoned as integrating it with the full sys-
tem would have involved sophisticated architecture changes.
Furthermore, there were limited added benefits as it was
found that ARUCO markers detected using the aruco ros
package [20] were reliable and accurate in localizing the po-
sition of the wheelchair on the map, with a precision level up
to the centimetre. Furthermore, the use of ARUCO markers
proved to be effective in counteracting the natural drift in
visual odometry that accumulates naturally after prolonged
movements of the wheelchair.

4.4 Mapping & Navigation
4.4.1 Navigation Stack

The navigation system (Figure 5) is responsible for directing
the user to a goal position set via coordinates within a known
map. It consists of four main components: the mapping sys-
tem, localisation system, odometry and costmap generation.
Based on the target use case of this wheelchair, we can as-
sume the environment is known beforehand, therefore the
wheelchair would have a floor plan of the environment and
the goal positions would be expressed as known coordinates
within the map. Two challenges arose as a result of using
a static floor plan: the need for a mechanism to locate the
robot accurately within the map and the requirement to per-
form additional mapping of the environment whilst moving
to build a knowledge of static obstacles not given in the floor
plan.
We started by considering ACML-based localisation models,
which use point-cloud data received from the environment to
find the most probable location of the robot within the map.
However, there are several reasons why this system might
not be applicable in this use case. Firstly, if the floor plan
provided is particularly simple or characterised by repetitive
patterns, it would be extremely hard to localise within the
map accurately. This is especially true in a hospital envi-
ronment where there are many objects in the surroundings
obscuring the walls described by the floor plan. A solution
would be for the user to input their rough location (e.g. room
number) or to use other localisation tools, such as GPS data,
as this would help by restricting the area within which to
localise. This would, however, either require more interven-
tion from the user or additional signal requirements to the
robot, both of which were undesirable. For these reasons,
it was decided to use Aruco markers placed throughout the
environment to allow the robot to localise itself (see section
4.3).

Once the robot’s location could be confirmed within the static
floor plan map, it was necessary to keep track of the robot’s
position as it moved throughout the environment and out of
sight of an Aruco marker. Many methods were considered to
solve this problem, including SLAM-based approaches; in the
end, we decided to use the pose tracking system available
from the ZED2I camera, which provided both continuous
odometry and pose tracking used to offset odometry drift,
both due to its convenience and the encouraging results in
initial testing. The ZED2I pose tracking algorithm makes
use of key point detection in the environment. These key
points are stored to maintain an accurate position of the
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Figure 5: Overview of the navigation stack architecture

robot relative to its starting position using loop closure.
With these different components implemented, the inputs
to the navigation system were a static floor plan map, point
cloud data provided from the ZED2I, a known position with
the static map and a 2D map built as the robot moved
through the environment that was provided by the ZED2I
(see section 4.3). The need for this dynamic map was to
make more accurate navigation decisions based on objects
that had previously been detected in the environment instead
of just the simple static map.
Furthermore, we identified the MoveBase ROS node to be
a well-supported and standard option to make navigation
decisions based on these inputs. This tool also allowed the
potential of switching to the less documented but more capa-
ble MoveBaseFlex in the future due to supposed backward
compatibility. Different occupancy layers were created by
splicing the static and dynamic maps using numpy to create
an input for both global and local costmaps, as well as pro-
viding the point cloud data as an input for the local costmap.
MoveBase could make use of these layers to generate a path
from its current position to the set goal location and output
”cmd vel” messages to drive the robot.
However, during testing, we found that the behaviour shown
by MoveBase was not always clearly explainable, with actions
such as turning the long way around to achieve a particular
orientation often performed. Unfortunately, the costmap
implementations were only sufficiently free of noise late into
the project, and it was assumed at first that these errors were
due to the noise in the costmap. Once this noise had been
removed, and some unexpected behaviours remained, there
was inadequate time left to try another alternative, such as
MoveBaseFlex.

4.4.2 Social Navigation

To design a wheelchair with situational awareness, we had
to include proxemics considerations within the navigation
planner, ensuring that the robot manoeuvres in a socially
respectful manner. We explored two options: using the
ROS package ’social navigation layers’ or building the tool
from scratch. The ’social navigation layers’ package provides
plugin-based layers for implementing constraints onto the
path planning taking into account proxemics [21] and pro-
viding easy integration with the navigation stack; however,
it does not allow for customization and improvement. There-
fore, we chose to build our own tool to have greater control
over its design.

The tool uses object detection from the ZED2i to obtain infor-
mation about the people, such as location and velocities. It
then represents these people depending on their behaviours
in the form of a ’socially respectful’ cost map, which is then
taken into account when path planning is performed re-
sulting in a route similar to the way a human would move
through the environment.
It should be noticed that the ’social’ cost map, representing
the people disposition, is integrated into the global cost map
of the navigation stack and not the local cost map, as the
decisions the wheelchair should make about people at close
range (local cost map) should be different to that of people
further away (global cost map). In fact, if a person is close
to the wheelchair, the latter needs to actively avoid them
quickly, e.g. stopping and then moving around someone or
waiting for them to move. For such a situation, we treat the
nearby person as a static object, detecting it using the point
cloud data from the ZED2I. Instead, for a person further
away, we can warn the navigation system anticipating the
possible future obstacle so that move base can take this into
account in the path planning.

Based on work discussed in section 3.1 and further research
into work such as [21], [22] and [23] a useful basis for repre-
senting the proxemics of people was built. We identified the
three most common scenarios to consider for our behavioural
analysis (see figure 6):

1. A stationary person was represented using the super-
position of two 2d Gaussian distributions. The first
Gaussian is to represent the person in their current po-
sition and size, using a distribution to ensure that the
wheelchair does not get too close to the person unless
there is no other less ’expensive’ path. The second is
to represent their direction-specific proxemics, giving
someone more room if passing in front of them to avoid
obstructing their view.

2. Stationary people interacting (e.g. two people are
facing each other) are represented by applying super-
position to the distributions of the individual positions,
causing the area between them to be also occupied.
This is to consider that would be inappropriate to cut
between people having a conversation if there is an
alternative path available.

3. People moving are represented considering their fu-
ture predicted location and whether their path will
collide with the wheelchair one. Their current velocity
is computed, assuming this will remain relatively con-
stant during the next few seconds, we predict where
the person will be after t seconds. Moreover, we as-
sume that if the person’s velocity is larger, their motion
is more likely to be sporadic, our prediction is more un-
certain and, therefore, the distribution is more spread
out. The value of t was tuned by taking into account
the max range that we can detect a person on the
ZED2I and the average speed of the wheelchair.

4.5 Human-Robot Interaction
At the core of our design lies the will to take into account
the needs of the user’s physical abilities, emotional state and
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Figure 6: Distribution for human behaviours, from top to
bottom; distribution of a stationary person facing to the right,
distribution of two people interacting with one another, distri-
bution of two people moving in different directions, the red
arrows are the actual locations of the people at the measure-
ment time.

the environment around them. As these change over time,
the wheelchair is expected to be able to adapt through: user,
social, and external agent considerations.

4.5.1 Emotion Detection

In relation to H2, an emotion detection system utilizing au-
tomatic facial expression analysis (AFAE) was developed
to constantly determine the current emotional state of the
user. Various AFAE modalities currently exist in literature as
discussed by [24, 25] including macro-expressions, micro-
expressions, FACS, and multi-modal systems (combining fa-
cial data with physiological signals). These systems alongside
corresponding various acquisition methods were evaluated
against a set of criteria as show in figure 7.

Figure 7: Emotion detection modalities comparison

We require a system which is able to detect emotional state
with accuracy and speed (to perform well in real-time), is eas-
ily interpretable to children (vital for user trust and comfort
[26]), and is not too invasive in terms of acquisition. As seen
in figure 7, macro-expression modality boasts a low com-
plexity, high interpretability, and has a simple, non-invasive
acquisition method. While other methods may offer better
sensitivity in detecting the true user emotional state, they
come with associated trade offs in other criterion [24, 27].
As discussed in [24], many macro-expression models have
been developed in literature, trained and verified on datasets
with varying displays of emotion, namely: posed, sponta-
neous, and in the wild. For the given use cases of the
wheelchair, accurate performance on the later two is required.
Various models discussed in [28] were compared on LFW
[29] (a widely-used, in-the-wild dataset in literture). Namely,
the models used (VGG[30], FaceNet[31], OpenFace[32], and
DeepFace[33]) were evaluated on accuracy as seen in fig-
ure 8. VGG-Face displayed the highest accuracy alongside

proving to be most robust during integration testing with the
overall system setup of the wheelchair.

Figure 8: Macro-expression model performance on LFW
dataset

The chosen VGG-Face model was wrapped in a ROS node and
received frames from the iPad also used for the user-interface.
The output prediction of the model from the 7-basic emo-
tions system would then be used to scale the velocity values
of the navigation stack, as discussed in 3.2. Two possible
approaches were considered to achieve this. The first is
to intercept the output command velocity published by the
navigation stack, scale them directly according to the last
recorded emotion, and publish the adjusted values to the
drive system. However, this effectively overrides the motion
controller and navigation algorithms potentially introducing
non-linearities and undesired behaviour into the system. The
alternate approach would be to utilize the emotional state
information as an input to the navigation stack via scaling
the maximum and minimum velocity of the system. This can
be done configuring these parameters used by the trajectory
planner. This allows the navigation stack to take this change
into account preventing the previously described drawbacks
of the first approach. Hence, a ROS dynamic reconfigure

client [34] was used to achieve this as it allows for the con-
figuration of these parameters during run-time.

4.5.2 Laser Path Indicator

The laser path indicator projects the wheelchair’s intended
path of travel onto the ground ahead of the wheelchair. It
achieves this by rapidly sweeping the dot from a laser diode
module back and forth in the x and y-axis. There were
several options to consider when implementing the laser
path indicator. The first one was to purchase a laser galvo to
accurately control the position and the direction of the point
laser to draw precise paths. However, increased precision
came with increased cost as well as long shipping times
making this option undesirable. The second approach was
to purchase an off-the-shelf laser projector that allowed the
drawing of line art images. This was more cost and time-
effective but required integration with Arduino to control
the projection pattern. This would have presented a more
steep learning curve compared to the final option. The final
approach was to create a laser galvo using DC stepper motors
controlled with an Arduino, a laser diode and a 3D-printed
casing to mount, allowing the setup to perform like a galvo.
Although this option presented as the least precise, it was the
most cost and time-effective way to project path information
with enough accuracy. The path drawing was accomplished
using galvos consisting of mirrors attached to stepper motors
as shown in Figure 9. Two galvos are placed at right angles to
each other and the laser reflects of both mirrors sequentially
to cover movement in both the x and y axes.

The laser projector relies on the Persistence-of-Vision (PoV)
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Figure 9: Laser Projector Figure 10: User-Interface

effect to create the impression of a solid line from a single
laser dot. The theoretical minimum frequency at which the
dot needs to move back and forth is 24Hz, the minimum
refresh rate for smooth video. However, experimentation
showed that it was possible to push this value to 20Hz at the
expense of some flickering. Stepper motors can be moved in
small increments called steps. To remain within the timing
constraints for PoV, a maximum of 400 steps can be made.
This places a constraint on the maximum displacement, from
the starting position, of the laser dot on each axis. The step-
per motors are driven by dedicated stepper motor controllers
which are controlled using an Arduino. The laser diode mod-
ule can also be switched on and off by the Arduino to allow
for a seamless homing of the laser dot. The motors were
powered using the 12V supply from the wheelchair which
was then converted to 5V using a DC step-down voltage reg-
ulator. The Arduino was plugged into the onboard computer
to receive power and enable serial communication.

The short path information from Navigation was sent through
a ROS topic which was then received and processed by the
python code running on the computer. The coordinates
received were fitted by a quadratic equation to create the
line. The movement information for the x and y axes was
derived from the points on the line and then sent to the
Arduino through the serial port. A 3D housing was designed
to mount the laser module onto the left metal bracket on
the chair. The housing also included a safety cover at the
top to avoid the laser shining into the user’s eye in case of
a loose connection in the motor wires which might make
the mirrors rotate randomly. The mirror holders designed to
attach the mirrors to the motors were also 3D printed. The
laser path drawn is visible under any lighting condition and
on any flooring. It is most suitable for polished surfaces such
as wood or vinyl as it allows the laser path to be reflected
away from the user’s eye and towards the bystanders. A low-
powered laser diode module was used to ensure the safety
of both the wheelchair user and bystanders. Furthermore, as
the laser is always oriented towards the ground, the risk of
direct exposure to the laser beam is minimal.

4.6 User Interface

A graphical user interface (figure 10) was developed in the
form of a web application coded in HTML, JavaScript and

CSS. The web app communicates with the ROS system via
a python intermediate which hosts the website locally and
allows users to access the web page when connected to
the same network. The UI was designed such that it could
be easily configured and used on an iPad attached to the
wheelchair. The UI has been designed with accessibility as
its focus and targeted at disabled children.
Large touch input space it is expected that the user of
the wheelchair will have some level of motor impairment,
including those related to dexterity and hand mobility. It is
therefore important to have icons much larger than other
interfaces on the iPad to allow ease of use.
Graphic icons the wheelchair may be used by children with
cognitive disabilities as well. Hence, graphical icons are used
to ease the use of the GUI.
High contrast mode taking into account possible vision
impairment and colour blindness, a high contrast mode is
designed with a colour pallet used as a standard for these use
cases [35]; this mode is easily triggered by a toggle switch.
Voice control and talk-back some users may suffer from
extremely limited to no mobility, for those individuals we
include a voice control mode as well as a text-to-speech
feature. This has been implemented via the web speech
API toolkit which provides compatibility with a variety of
browsers and sufficient efficiency to recognise the keywords,
as per the use case.

5 Experiment Setup & Methodology
Testing After testing the individual subsystems and the
base integrated system, we started running experiments with
the system, isolating and evaluating each research hypothesis
against the baseline (without the additional features). We
targeted four scenarios to test the effect of the different
features independently:

• Baseline: Autonomous wheelchair without social navi-
gation and human interaction considerations

• H1 : Baseline with social navigation feature

• H2 : Baseline with emotion recognition feature

• H3 : Baseline with directional indicator

As our target use case was a pre-mapped environment, the
experiment involved setting up some pre-determined loca-
tions (’bathroom’, ’kitchen’, ’door’ and ’table’). Each case was
tested with moving and static pedestrians surrounding the
wheelchair to recreate a social environment. In particular,
we identified three common social scenarios:

• One or more individuals separately standing in the
wheelchair trajectory.

• One or more people crossing the wheelchair trajectory.

• A group of people interacting with each other and
standing in the wheelchair trajectory.

In terms of objective performance, since for each of the
scenarios, the wheelchair behaved as intended, accordingly
to the different features tested, we decided to follow up
on the testing by evaluating the system from a research
perspective, investigating the level of user comfort and trust
in the system.
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7 DISCUSSION

Hypothesis Evaluation The main limitation of the research
side of this project has been the inability to run system ex-
periments with actual users in it, making us unable to use
objective measures such as task performance and robot util-
isation to evaluate our system. This has been due to the
impossibility of receiving ethics approval within the project
time span to test it with children whilst also finding it chal-
lenging to test the system with people of greater size and
weight due to the calibration and physical setup of the hard-
ware. However, we found that using standardised question-
naires on wheelchair video demonstrations, a widely used
methodology for research hypotheses of this kind, consti-
tuted a valuable starting point for the research evaluation of
our system.
The survey comprised 4 sections, respectively presenting
the baseline and the three research hypotheses; for each
of them, a video was shown displaying the functioning of
the system from the first and third-person perspective, fol-
lowed by industry-standard questionnaires, together with
some open-ended questions.

User Comfort Many well-established questionnaires have
tackled the challenge of quantifying the user experience and
comfort in particular, both with generalised metrics such as
the User Experience Questionnaire (UEQ) or linking it to the
cognitive workload of the user (NASA TLX index). However,
in our case, the experiment is based on the perceived experi-
ence rather than a hands-on one, we identified the System
Usability Scale (SUS) to be the most appropriate to evaluate
user comfort.

Trust in the Wheelchair As theorised by Castelfranchi et
al. [36], trust can be measured using the quantitative di-
mensions of its cognitive constituents, i.e. assuming that
the greater the human’s belief in the machine’s competence
and performance, the greater the human trust in machines.
Following this reasoning, we use the Technology Acceptance
Model (TAM) and Trust in Automation (TiA) questionnaire to
quantify the level of trust of external people interacting with
the wheelchair, such as carers. These two metrics considered
many aspects, including the perceived usefulness, perceived
ease of use, intention of use, and belief in the robot’s capabil-
ity and independence, which can then be combined to obtain
an estimate of the general level of trust in the wheelchair of
the respondent.

6 Results
From a user comfort perspective, the SUS questionnaire gave
promising results, indicating how both H1 and H2 scored
higher in terms of user experience compared to the baseline
system (Figure 12). Notably, as can be seen in Figure 11,
confidence in using the system rose significantly when us-
ing the social navigation modifications and was even higher
when adding in the emotion detection system. This result is
interesting as the emotion detection system gave a positive
increase on average over simply just using the social navi-
gation system in terms of comfort but not in terms of trust
(Figure 13) and in the textual responses received. This could
be due to the fact that it is easier to imagine the utility and
understand the functioning of a system with social naviga-
tion, instead of a system with emotion-based motion, as the

latter is less human-like. Following these considerations, it
would be useful to test the system with people, letting them
experience the system hands-on and observing the learning
curve; this would be especially useful if we want to test the
level of trust of wheelchair users and their carers, and the
long-term effects on the user comfort.

When checking the eigenvalues of the covariance matrix,
it found that only three eigenvalues were greater than 1,
indicating that three principal components are necessary to
describe the data. This suggests that some of the questions
used in the surveys were overly similar and produced overly
correlated information. The number of data points present
in the data set, however, is not high enough statistically to
apply PCA reduction (or other methods).

For the SUS questionnaire, in order for the 95% confidence
interval to be above the mean score with basic navigation
the average score for social navigation and social navigation
with emotion detection would have to be above 3.1, which as
can be seen in Figure 12 has been achieved by a significant
margin. This confidence interval uses the mean and standard
deviation of the data and, given the 39 samples collected, we
can still assume normal distribution within the data. In the
case of the TIA questionnaire, we needed above 3.2 which
was again achieved by some margin as seen in Figure 13.

Figure 11: Highlight of the result from the SUS questionnaire:
level of confidence for different system topologies

Figure 12: Grand average result from the SUS questionnaire

7 Discussion
One of the most significant challenges to the system, remains
to be the odometry and pose drift. This led to difficulties in
accurately localising the wheelchair within its environment –
disrupting routing and navigation capabilities. To this avail,

8
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Figure 13: Grand average result from the TiA questionnaire

the integration of wheel encoders could provide a more
precise measurement of the robot’s displacement, mitigating
the drift. Secondly, incorporating different sensor classes,
such as LIDAR, may offer an alternative sensor less sensitive
to environmental factors like lighting conditions. Finally, the
addition of a further localisation source, such as GPS or IPS,
could aid in distinguishing between homogeneous rooms or
different corridors.

Initial tests found that the ZED2I could keep track of the
robot with sufficient accuracy, indeed enough to maintain low
enough error between Aruco detections. However, later in
the project implementation, we began to notice some issues
with this system, the cause of which was sometimes unclear.
Occasionally, the pose tracking would jump around randomly,
which was eventually diagnosed as a consequence of the
camera only having a white wall in its view and so not having
any key points to localise itself. During the demonstration
of our robot, the pose tracking errors were noticed to be far
higher than in testing. It is suspected this may be due to the
extremely high number of people in the environment, which
may have led to many of the key points moving around due
to being located on humans in view of the camera. Using
a basic SLAM system, such as the use of ACML with an
environment map, would likely have resulted in the same
error and mitigating this would potentially require further
research into SLAM algorithms that can account for non-
static objects in the environment.

One of the shortcomings of the laser path indicator is un-
der bright lighting conditions, depending on the material
and colour of the flooring, the projected path might appear
less distinct. To overcome this a green laser diode can be
used as it will be perceived as brighter by the eye due to its
wavelength. During the implementation process of the laser
path indicator, both red and green lasers were tested. It was
evident that the green laser appeared brighter. However, the
laser path was less visible when the green laser was used due
to the dark blue carpeting in the testing room therefore, the
final design includes the red laser diode. Another solution
would be to use a laser diode with a higher power output. In
this case, the safety of the laser would be of a larger concern
as accidental exposure would be damaging to the eye.
Respondents to the questionnaire also noted a visual ”drift”
in the path drawn by the lasers. This can be attributed to
the lack of positional feedback in the control of the step-
per motors. Hence, after prolonged periods of operation,

the accumulated effects of overstepping lead to the above-
described phenomena. To rectify this, encoders can be used
with the motors to provide a source of feedback for position
control. However, the added computational demands of in-
tegrating position control for both axes exceed the capacity
of the Arduino, necessitating the use of a faster and more
powerful microcontroller such as an STM32.
The drift issue could also potentially be overcome by using
commercially-built laser galvo assemblies. Such galvos use
electromagnets, rather than stepper motors, to control the
mirrors. This not only increases the precision and movement
speed of the mirrors but also eliminates any overstepping
and the drift associated with it. Furthermore, the enhanced
precision of the mirrors in commercially built galvos will
improve the resolution of the path line drawn.

8 Conclusions & Future work
This study investigated the set of hypotheses in 2.1 using
a questionnaire-based approach. These preliminary find-
ings indicate that the overall system is functioning efficiently
and providing promising results in relation to the research
hypotheses. However, for a more comprehensive understand-
ing and validation of the hypotheses, it is recommended that
future research involves testing the smart wheelchair with
actual users. This approach allows participants to experi-
ence the system first hand leading to more representative
results. Moreover, following respondents’ feedback, motiva-
tion to integrate all components of the hypotheses to create
a more cohesive and robust system has blossomed. This
would entail refining the wheelchair’s odometry to enhance
its navigational capabilities, as well as developing more ro-
bust emotion and social models, ensuring that the smart
wheelchair is better equipped to interact with users and their
surroundings.
Despite the limitations associated with the current approach,
a solid foundation for future development has been estab-
lished. Further, the results obtained thus far underscore a
necessity for further investigation through human experi-
ments.
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